If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-9=30
We move all terms to the left:
5x^2-9-(30)=0
We add all the numbers together, and all the variables
5x^2-39=0
a = 5; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·5·(-39)
Δ = 780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{780}=\sqrt{4*195}=\sqrt{4}*\sqrt{195}=2\sqrt{195}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{195}}{2*5}=\frac{0-2\sqrt{195}}{10} =-\frac{2\sqrt{195}}{10} =-\frac{\sqrt{195}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{195}}{2*5}=\frac{0+2\sqrt{195}}{10} =\frac{2\sqrt{195}}{10} =\frac{\sqrt{195}}{5} $
| 4x^2-3=12 | | (9+p)2=45 | | 497=36+n | | 10/x-30=400 | | n/3+10=13 | | 2x^2+0,5=5 | | 7.4=-1p-2.8 | | u/3+8=10 | | 2x^2−8=0 | | u3 + 8 = 10 | | 2(-2y-1)+2y=7 | | h=-16(1.5)^2+24(1.5) | | .90x=52 | | 2(x+12)-2x=3(x-6) | | h=-16(1.2)^2+24(1.2) | | 3h-10=2 | | h=-16(0.9)^2+24(0.9) | | h=-16(0.6)^2+24(0.6) | | h=-16(0.3)^2+24(0.3) | | (-3x+1)(x-9)=0 | | h=-16(0)^2+24(0) | | 5/x=2/(x-3) | | (3x+1)(x-9)=0 | | (-3x-1)(x-9)=0 | | .02x=36 | | 3(2y-5)=-3 | | 2.0x+196.8=0 | | -8-(-8)=x/9 | | 2x+196.8=0 | | 0.7m-2-0.8m=-13 | | 8-13=x-2+3x3 | | 8-13=x-2+(3x3) |